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A B S T R A C T  

This paper is motivated by the question of whether the invariants fl, A, cA 
completely characterize isomorphism of Markov chains by finitary iso- 
morphisms that have finite expected coding times (fect). We construct a 
finitary isomorphism with fect under an additional condition. Whether 
coincidence of/3, A, cA implies the required condition remains open. 

1. I n t r o d u c t i o n  

In the wake of the results of Keane and Smorodinsky [KS79a, KS79b] on finitary 

isomorphisms of Markov chains, there was considerable activity on finitary iso- 

morphisms with finite expected coding times (fect). It became clear that entropy 

was no longer a complete invariant for (aperiodic) Markov chains, and further 

invariants were constructed [Par79, Kri83, Tun81, PS84, Sch84]. As the smoke 

cleared in 1983, two questions emerged. The question of whether the classifi- 

cations by almost block isomorphism and finitary isomorphism with feet were 

identical was answered negatively in [MT91]. The other question, whether the 

three invariants/3, A, cA (which will be defned below) form a complete set for 

finitary isomorphism with tbct, remains open after nearly 20 years. 

In this pal)er we will make some progress on this question by constructing 

a finitary isomorphism with feet lmder an additional i)ositivity aSSUlnl/tion. In 

particular, working over a suitable ring, it is known that there exists a matrix 
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intertwining the defining matrices of the two Markov chains; a corollary of our 

result is that the Markov chains are finitarily isomorphic with fect whenever there 

exists an intertwining matrix with a positive row and a positive column. 

We start by defining Markov chains as in [PT82, MT91]. An e x p o n e n -  

t ia l  f u n c t i o n  is a function R ~ R + given by t ~ a t for some a > 0. Let 

exp = {at: a > 0}, and Z + denote the non-negative integers. Consider a matrix 

A = A(t) over Z + [exp], the set of polynomials in exp with non-negative integral 

coefficients. We can write 

A ( I , J ) =  E al,j, mm, 
rnEexp 

with aI,J,m E Z + and a1,g,m nonzero for only finitely many m. Let At denote the 

non-negative real matrix resulting from evaluating A at t E R. We will assume 

that  the matrices we use are primitive (aperiodic). Everything we say has an 

extension to the periodic case, which we leave to the reader. 

When t = 0, the matrix A0 determines a directed graph G(A) with edges E(A) 
and states (vertices) S(A), and a shift of finite type (XA, aA). We can associate 

with each edge, e, in G(A) an element of exp called the weigh t  of the edge, 

wtA(e). The matrix A also defines a probability measure, #A, giving the Markov 

chain (XA, aA, #A) as in [MT91]. A matrix P over Z + [exp] is called s t o ch as t i c  

if the non-negative real matrix P1 is stochastic. By Proposition 1.3 of [MT91], 

there exists a unique stochastic matrix P defining the same Markov chain as A. 

A Markov chain is traditionally defined via a non-negative real-valued stochas- 

tic matrix M. Putting P(I,  J) = M(I,  j ) t  whenever M(I,  J) # 0 and P(I,  J) = 
0 when M(I,  J)  = 0, we get a stochastic matrix over Z+[exp] which has P1 = M 

and defines the same Markov chain. 

Define the beta function ~A of A by letting ~A(t) equal the spectral radius of 

At, for t E R. 

Let G be a primitive weighted graph with weights in a multiplicative Abelian 

group; for example, G = G(A). For a path 7 = O ' " e n  in G, its l e n g t h  is the 

number of edges,/(7) = n, while its we igh t  is the product of the weights of the 

edges, wt(7) = 1-Lnl wt(ei). We define the d e l t a  g roup ,  A, g a m m a  g roup ,  F, 

and d i s t i ngu i shed  coset ,  cA for G as in [PS84]. 

A = {wt(7)wt(7')-l: 7, 7' are cycles in G wi th / (7)  = / (7 ' )} ,  

cA = {wt(7)wt(7')-l: 7, 7' are cycles in G wi th / (7)  = / ( 7 ' )  + 1}, 

and F is the multiplicative group generated by {wt(7): 7 is a cycle in G}. Parry 
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and Schmidt [PS84] showed that the quotient group F /A  is cyclic and generated 

by cA. 

Two Markov chains (XA, aA, PA) and (Xs ,  aB, PB) are i s o m o r p h i c  if, almost 

surely, there exists a measure-preserving bijection r XA --+ XB with CaA = 

aBe. The isomorphism r is f i n i t a ry  if both r and r  are continuous a.e., in 

which case we can find ay, my: XA --4 Z + defined a.e. so that if x~ = xi for 

- m y ( x )  < i < ay(x) then r = r and similarly ay-~,my-,: X B ---} 

Z +. A finitary isomorphism is said to have f in i te  e x p e c t e d  c o d i n g  t i m e s  

(fect)  if ay, my, ay-1, my-1 may be chosen so that f (ay + my)dttA < c~ and 

f (ay-1 + my- ,  )dpB < oc. 

A finitary isomorphism is called h y p e r b o l i c  if it preserves the stable and un- 

stable manifolds a.e. Schmidt [Sch86, Sch87] showed that a finitary isomorphism 

with fect is hyperbolic, and that ~, A, cA are invariants of hyperbolic finitary 

isomorphism. An affirmative answer to the question of whether coincidence of 

~, A, cA implies finitary isomorphism with fect would in particular show that 

the finitary isomorphisms with fect and hyperbolic finitary isomorphisms yield 

the same classifications, that is, if there exists a hyperbolic finitary isomorphism 

between two Markov chains then there also exists a finitary isomorphism with 

finite expected coding times. 

Our main result is the following. 

1.1. THEOREM: Let P, Q be primitive stochastic matrices over Z + [exp] with 

~p : /~Q, A p  = AQ,  and c p A p  = CQAQ. Suppose there are states Io E 

S(P) and Jo C S(Q), a nontrivial column vector vr and a row vector vl over 

Z + [exp] with (A~vr)(Io) ---- (viBn)(Jo) for all It E ~,+. Then there exists a 

finitary isomorphism r Xp -~ XQ with finite expected coding times. 

It was shown in [PT81] that ~p = ~Q implies the existence of a nontrivial 

matrix V over Z[exp] such that PV = VQ. In the case there is a V with a 

non-negative row and a non-negative column we have the following. 

COROLLARY 1.2: Let P, Q be primitive stochastic matrices over Z + [exp] with 

/~p = /~Q, i p  ---- AQ, and C p i p  : CQAQ. Suppose that we have a matrix V over 

Z[exp] such that PV = VQ and the entries of at least one nontrivial row and 

one column of V belong to Z+[exp]. Then there exists a finitary isomorphism 

r Xp -+ XQ with finite expected coding times. 

The Markov chains (Xp, ap, pp) and (XQ, aQ, pQ) are f in i te ly  equ iva l en t  if 

there exist a Markov chain (XR, an, #n) and bounded-to-one continuous surjec- 

tions ~: XR --~ Xp, tg: Xn  "-+ XQ that  commute with the shift transformation 
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and preserve measure. If, in addition, the maps ~ and 0 are one-to-one a.e., then 

(Xp, ap, #p) and (XQ, aQ, pQ) are said to be a lm o s t  b lock  i somorph ic .  An 

almost block isomorphism is of course a (very special) finitary isomorphism with 

fect. It was shown in [PT81] that if P V  = VQ for a matrix V over Z + [exp] then 

(Xp, (rp, #p) and (XQ, (rQ, pQ) are finitely equivalent. The expectation was that 

the existence of such a V would follow from the equality ~p = ~Q (see [PT81, 

Par91]). Combined with Ashley's replacement theorem [Ashg0], this would then 

yield an almost block isomorphism from the equalities ~p  = ~Q, i F  = AQ, 

C p / k p  = CQAQ. These hopes were dashed by examples given in [MT91] (see 

Example 2.2 below). Corollary 1.2 reveals that a milder positivity requirement 

on V is sufficient for finitary isomorphism with fect. 

If H is a (multiplicative) subgroup of the positive reals, we will denote by 

Z[H] and Z+[H] the corresponding sets of integral and non-negative integral 

combinations of the exponentials a t with a E H. 

We do not know whether the existence of I0, J0, vr, vl as in 1.1 can be deduced 

from the coincidence of/~, A, cA. We will see below that we may restrict to 

Z[A] and, since Z[A] is naturally isomorphic to the Laurent polynomial ring 

Ti = Z [ x ~ , . . . , x ~ ] ,  work over Ti. Then P, Q are replaced by matrices A , B  over 

T i +  = z + x • "' d ]" Letting m,p denote the sizes of A, B, for each Io E S(A) 
and Jo E S(B) the set 

Mlo,Jo = ((v,w) �9 Tim+P: (Anv)(Io) =- (wZn)(Jo) for all n �9 Z +} 

is an Ti-submodule of Tim+p. We have Mlo,Jo 7 ~ {0} since there exists V over 

Ti with AV = VB. In addition, by the primitivity of A, if MIo,Jo contains a 

nontrivial element of (Ti+)m+p then it contains an element of (Ti+ \ ( 0 } )  m+p. 

This motivated us to give in [EMT] a characterization of the submodules of TIN 

that contain an element of (Ti+ \{0})  g.  It is possible that this characterization 

will help to decide if the existence of Io, J0 with MIo,Jo • (Ti+ \ ( 0 } )  m+~ r O is 

a consequence of the equality of 8, A, cA. 

2. Laurent polynomials 

We will restate the conditions of 1.1 in a more convenient form. 

Suppose P,  Q are primitive stochastic matrices over Z + [exp] with ~ p  = /~Q, 

Ap ___ AQ, and CRAB = CQAQ. Write A = Ap _-- AQ. According to Proposition 

1.17 of [MT91], we can find diagonal matrices D1, D2 over exp and m E exp such 

that the matrices 

A -  D71PD1 and B -  D21QD2 
m m 
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are over Z + [A]. It  is easily seen that  /~A = i~B, AA = AB ---- FA = FB = A, and 

A, B define the same Markov chains as P, Q. 

If  Io, Jo, vr  and vl are as in 1.1, let ~,~ -- m D l ( I o ,  I o ) D ~ i v r  and ~'t = 

v lD2D21(Jo ,  Jo)m. Find a finitely generated subgroup H of the positive 

reals such tha t  4~,vl  are over Z[H] and H contains A. Then  write ~'r = 

~i  aiVr,i,t "~l = ~-~i a~vl,i, where v~,i, vz,i E Z[A], the index i runs through the 

(finite) set of cosets H / A  and ai is a representative of the i- th coset in H / A .  For 

each i the equation (Anvr, i )(Io)  = (vt , iBn)(Jo)  holds for all n E Z +. Choosing i 

such that  v~,i ~ 0 and replacing v~, vt by vr,i, vz,i, we may assume tha t  vr  and 

Vl are over Z + [A]. 

Now pick a basis b l , . . . ,  bd of the free Abelian group A. Every  5 E A can be 

expressed uniquely as a product  of integral powers of b l , . . . ,  bd. Put t ing  xi = b~ 

we can view (i t as a monomial  of 7r = Z [x~ . . . .  ,Xd~], thus identifying Z[A] 

with T~ = Z [ x ~ , . . . , x ~ ]  and Z+[A] with T~ + = Z + [x~ . . . .  , x~] .  The matrices 

A, B are then over Tr +, and weights of edges in the corresponding graphs are 

monomials  of 7r For X l , . . . ,  Xd > 0 we have the spectral radius ~ A ( X b . . . ,  Xd) 

of the nonnegative matr ix  A ( X l , . . .  ,Xd) and, as in the proof  of Theorem 5.1 

in [MT91], we find tha t  /~A(Xl , . . . ,Xd)  = 13B(Xl , . . . ,Xd) .  This gives us the 

conditions tha t  will be used for the construct ion of a finitary isomorphism with 

fect. 

2 . 1 .  C O N D I T I O N :  

1. A, B, vr,  vl are over Z + [A] C / ~  and A A --~ A B --~ A. 

2. /TA(Xl,. . . ,Xd) = ~B(Xl , . - . ,Xd)  for all x l , . . . , X d  > O. 
3. (Anv, .)(Io) = (v tBn) (Jo)  for a11 n �9 Z +. 

2.2. Example  ([MT91] 5.7 and 5.8): Let p(x)  = 2x and q(x) = 1 + x 2. Consider 

0 1 0 O) 
q ' Y 0 p 0 over . 

y 0 0 q 

[MT91] showed tha t  X A and X B  are not finitely equivalent (hence not almost  

block isomorphic),  and also explicitly constructed a finitely isomorphism with 

fect between them. Let 

y 0 q2 _ p q  �9 

Then A V  = V B .  Since the first row and second column of V are nontrivial  

and over Z+[x,  y], we let Io = 1, Jo = 2, vr  = Vejo,  and vl = esoV. Then 
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Condition 2.1 is satisfied, and the existence of a finitary isomorphism with fect 

follows from 1.1. 

3. W e igh t s  a n d  boxes  

We will need a couple of lemmas regarding the weights of cycles in our graphs. 

3.1. LEMMA (cf. [MT91] 5.13): For A, B satisfying Condition 2.1 and for every 

5 in A there exist cycles a, ~ in A starting at Io and cycles 1~, ~ in B starting at 

Jo such that 
5 = wt(~------A) = wt(~-----A) 

w t (~ )  ~ t ( ~ ) '  

l (~)  = I(~) = l(~) = l(~),  

w t (~ )  = wt (~) ,  and 

~ t ( ~ )  = wt (~) .  

Proof: Since 5 E A we can find a', ~' starting at Io and passing through all 

states of A, and b',/~' starting at Jo and passing through all states of B with 

5 = wt(a'_____~) = wt(b'____)) 
~t(~' )  ~t(~,)  ' 

l(a') =/(~ ' ) ,  and 

l(b') = l(~'). 

Let a = a pl(b'), ~t -~ ctla II(b')-l, b = b 't(a') and b = bib fl(a')-l. The ratio of weights 

is still 5, but now the lengths are all equal. 

Now recall from [MT91] the weight-per-symbol polytopes W P S A ,  W P S B  and 

the fact (see also [Tun92]) that  ~A ~--- ~B implies W P S A  = W P S B .  Hence, 
1 

wt(b) rS~ E W P S A  and there exists a finite number of cycles, ai,  in A and 

positive integer n such that 

wt({oq}) :---- I - I  wt(o~i) ---- wt(bn), and 
i 

l ( { ~ ) )  := ~ l ( ~ i )  = l(bn). 
i 

Similarly, since wt(a)) 1/l(a) E W P S B  there exists a finite number of cycles,/~i, 

in B and positive integer m such that 

wt({/~i}) := l-I  wt(~i) = wt(am), and 
i 

i 
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Since a passes through every state of A we can splice the cycles ai  into the cycle 

a; write this as a{ai}.  Similarly splice the f~i into b and denote the resulting 

cycle by b{/3/}. Finally, let 

: =  ~ t a m - l  {c~i},  

/3 := bn{~} ,  and 

/~ :---- b b n - l { / 3 i } ,  

to get the desired result. II 

3.2. LEMMA: There exist cycles 7 A ,  7tA in A starting at Io and passing through 

every state of A, and a cycle "{B in B starting at Jo and passing through every 

state o B, such that wt(TA) = wt(V'A)  = wt( B), a n d  l (VA)  = l(V'A) + 1 = 

Moreover, i l L  E N, we can make sure that ~A,"YB are not periodic of period p 

for any p < L. 

Proof'. Pick cycles CA, C~A in A starting at I0 and passing through every state 

of A, and a cycle CB in B starting at J0 and passing through every state of B, 

with l(cA) = l(dA) + 1 = l(cB). Now, using the cycles found in Lemma 3.1, let 

7 A  = CA~wt(cA)O~wt(c'A)Olwt(cB), 
I ! - 

7A = CAawt(ca)Cewt(c'A)O~wt(cB), and 

7 B  = CB~wt(cA)~Wt(C~A)~Wt(CB) �9 

Clearly, CA, CB may be chosen to also ensure that 7A, 7B are not periodic of period 

p for any p < L. II 

For each I E S(A)  we view vr ( I )  as a sum of monomials each of which gives 

a weighted edge from I to Jo. Similarly, for each J E S(B),  we view v l ( J )  as 

specifying weighted edges from Io to J.  Taking n = 0 in 3 of Condition 2.1 we 

get Vr(Io) = vt(J0), which means that v~(Io) and vl(J0) define the same set of 

edges from I0 to J0. When e is an edge in A, B, v~, or v~ we will use ac, 6,~, ~c, 

and ~e to refer to the cycles provided by Lemma 3.1 for 5 equal to the weight of 

e. 

Our isomorphism will be constructed by gluing together boxes .  The top cor- 

ners of the box will be states S(A), for example I1,I2, the top edge, a, will 

represent a path in A from I1 to 12. The bot tom corners will be states in S(B),  

for example J1, J2, and the bottom edge, b, will represent a path in B of the same 
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length as a. The left and right sides will be weighted edges I1 --4 J1 and/2  --4 J2, 
respectively. Finally, whenever we form a box, the product of the weights of the 

top and right sides will equal the product of the weights of the left and bot tom 
sides. (See Figure 1.) 

I1 a �9 An(I1, I2) , I2 

Vl I wt(vl)wt(b) = wt(a)wt(v2) iv2 

J1 b �9 un(J1, J2) J2 

Figure 1. The product of the weights of the top and right sides of our 

boxes will equal the product of the weights of the left and bot tom 
sides. 

In Condition 2.1 we can assume that vr and vl are over Z + [A] \ {0}  by using 
the fact that A and B are primitive to replace v~ by ANv~ and vt by vzB N for 

suitable N �9 N. We pick one of the edges in v~(I0) = vt(J0) and call it v0. 

3.3. LEMMA: There exists a B-cycle w starting at Jo and, for each I �9 S(A) 
and each edge v �9 v~(I), there exists an A-path u(v) from I to Io, such that 
l(u(v) ) = l(w) and wt(u(v) )wt(vo) = wt(v)wt(w). Moreover, we can assume that 
all the u(v) are different. (See Figure 2.) 

I • u(v) 

w Jo Jo w 
(a) (b) 

l ,~ 
.1 v0 

J0 

Figure 2. By Lemma 3.3, there exists a word w such that for any 

edge v �9 vr(I) ,  as in (a), there exists u(v) to complete the box 
shown in (b). 
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Proo~ Write $ = S ( A )  and v -- yr .  We will use a tree in the manner  of [AM79]. 

The  tree will have {(I ,  v) C $ x v: v E v ( I ) }  for its set of vertices, and will be 

rooted a t  (Io, Vo). To grow the tree, we s tar t  with a single ver tex  (Io, v0), and 

i terate  the following step for k _< I$1 - 1. 

Iteration: Pick Ik C S \ { I o , . . . ,  Ik -1}  such tha t  there exists an edge, a, in A 

from Ik to Ij for some j < k. Now pick Vk E V(Ik) and add the ver tex  (Ik, vk) to 

the tree with an edge ek f rom (Ik, vk) to (Ij ,  vj).  The edges ek (k = 1 , . . . ,  ISI - 1) 

will be called type  I edges. 

Now for each i E { 0 , . . . ,  ISI - 1} and each v E v ( / i )  \ vi add a ver tex (I~, v) 

and a type  I I  edge (Ii, v) -+ (Ii, vi). Label  these type  I I  edges e l s i , . . . ,  en, where 

n is the number  of edges in the tree. 

For every I E S and every v E v ( I )  there is a pa th  f rom (I ,  v) to (I0, vo) which 

consists of zero or one type  I I edges followed by zero or more  type  I edges. Note 

tha t  the edges are always t ransversed with decreasing values of k. 

The  tree is complete,  and we are ready to s ta r t  the construct ion of w. 

I f  edge ek is type  I (k < I$1), then ek: (Ik, vk) ~ ( I j , v j )  for some j < k and 

there exists an edge a in A with  a: Ik --+ Ij. Now let 

Uk = a ('~A vk C~aC~vj ) (lj) 

~t~ ~ ~[A~)Zvk OLaOLvj , 

where we used the nota t ion  c(i) to denote  a ro ta t ion  of the cycle c so t ha t  it 

s tar t s  at  I .  (This is possible since 7~4 passes through every s ta te  of A.) 

If  edge ek is type  I I  (k > I$1), then ek: (Ii,  v) --+ (/:i, vi) for some i. Now let 

W k  : " / B " [ B ~ ' v ~ v ~  , 

uk = (TAav6~)  7A, and 

= 

Here we used two copies of 7A and 7B so tha t  we can ensure uk r u~ by taking 

L = 2max{ l (av ) :  v E Vr or v E vt} in 3.2. Notice tha t  in each case 

l(wk) = l(uk) = l(u~), and 

wt(w ) = 

Also, for edges of type  I (ek: (Ik, vk) -+ (Ij,  Vj)) we have 

wt (uk )w t ( v j )  -~- w t ( vk )w t (wk) ,  
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while for edges of type I I  (ek: (Ii, v) 4-4 (Ii, vi)) we have 

wt(uk )wt (v i )  = w t ( v )w t (wk ) .  

This means that for every edge ek: 

Figure 3. 

Isr. J. Math. 

(I, v) ~ (I ' ,  v') we can make boxes as in 

! I Uk (U~),,,,, 
, -  j 

i f I II 

b[ vl V II 

wk J0 J wk 
(a) (b) 

I II 

Lv 
Jo 

Figure 3. Boxes for (a) moving down the tree and (b) staying at a 

vertex of the tree. 

We define the word w to be the concatenation w = W n W n _ l "  "w 1. Each 

" Look at the path word u(v)  is put together in a similar way, using uk and u k. 

(I,  v) --+ (Io, vo). If  ek is on this path, put u(v)k = Uk; otherwise, put U(V)k = u~k. 
Then rotate each u(v)k appropriately to define u(v)  as the concatenation u(v)  = 

u ( v ) n u ( V ) n - l " ' "  u(v) l .  Since u~ allows us to stay at a vertex of the tree while 

traversing Wk in B and Uk allows us to move down the tree while traversing Wk, 

the proof of the lemma is completed by picking (see Figure 3) the corresponding 

boxes and gluing them together. | 

4. P r o o f  o f  t h e  t h e o r e m  

We will continue to regard v r ( I )  as specifying edges from I to Jo, and v l ( J )  as 

specifying edges from I0 to J .  If a is one of these edges, or if a is a path (word) 

in one of the graphs G(A)  or G(B) ,  we will denote its starting state by s(a) and 

its terminal state by t('a). 

The proof of Theorem 1.1 consists of three steps. 

STEP 1: Construction of  markers. Let the B-word WB and the A-words UA(V) 

be as in 3.3. Similarly find an A-word WA from I0 to Io and, for each v E v~(J), 

a corresponding B-word u s ( v )  from I0 to J such that  l(WA) = l(UB(V)) and 
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wt(WA)Wt(V) = wt(Vo)Wt(UB(V)). If  we put WA(V) = UA(V)WA for v E vr and 

WB(V) = WBUB(V) for v E vl and define 142A = {WA(V): v E v~} and ~VB = 

{wB(v): v E vt}, then for each v E v~(I)  and each v'  E v t ( J )  we obtain from 

Lemma 3.3 a box as in Figure 4. 

I WA(V) Io 

V ~)t 

J0 wB(v') g 

Figure 4. For each v E vr(I)  and v' E vz(J) we have a box with 

wt(v)wt(wB(V')  ) = wt(WA (V) )Wt(V'). 

We will modify the words WA(V), wB(v')  to ensure that,  in addition, words in 

WA and )/YB do not overlap. 

Take a simple cycle a = io. .  �9 starting and ending at I0, and label the states 

it passes through Io , . . . ,  Im so that  ik: Ik -+ Ik+l (with the convention that  

Im+l -= Io). Find Ik so tha t  there exists an edge jo ~ ik with s(jo) = Ik. Then 

find a path  j o " "  Jp of minimal length back to one of the states Il. If  I = 0 let 

b = io . . .  i k - l jo ' "  "jp; otherwise let b = io. ."  i k - l j o "  .jpil+l . . .  i,~. The cycles 

a and b only pass through the state Io at their s tart  and end, hence they have 

no nontrivial overlap. 

There exists k > 3 so that  akb k is not contained in wT~ for any w E WA and 

n E Z +. Let cl = aaaakb k and c2 -- aabakb k. Considering A-words gA and 

n E Z + with l(cl),l(c2),l(gA) < /(wT~), note that  no two words of the form 

wT~clgAC2 overlap. Similarly we can find words dl, d2 such that ,  for n E Z + and 

w E 142B with l(dl),/(d2), l(gB) < / ( 7 ~ w ) ,  no two words of the form dlgBd27~w 
overlap. 

Let c' be an A-cycle at I0 and d' a B-cycle at Jo such that  l(c') = l(dld2) + L 

and l(d') -- l(clc2) + L for some L E Z +. Put  gA = adld~Sclc~C'ad'(~c' and 

gB = ~dld:/~clc2d'~d'~c'. Now clgAc2 and dlgBd2 have the same length and 

weight. We replace each UA(V)WA E 14;A by WA(V) = UA(V)WAT~4OgAC2 and 

each WRUB(V) E IVB by WB(V) = dlgBd27~WBUB(V). Then we have a box as in 

Figure 4 for each v E v r ( I )  and each v'  E v l ( J ) .  In addition, words in WA have 

no nontrivial overlaps, and neither do words in 14;B. The sets WA and WB will 

be used as markers for our isomorphism. 
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STEP 2: Bijections between words not containing markers. Let us denote the 

set of A-words of length n by I/Vn(A) and put 

.AIn : { ( a , v )  e Wn(d)  • vr: s(a) = Io, t(a) = s(v)}, 

.4~ ={(a, v) E .4~: a does not contain a word in I/FA}, 

B" = { ( v , b )  e vt • w ~ ( B ) :  t (~ )  = ~ (b ) , t (~ )  = J0} ,  

Bn ={(v, b) e B~n : b does not contain a word in 142B}. 

For n = 1 ,2 , . . . ,  we will find bijections Cn: /~n --+ An such that Cn(v,b) -- 

(a, v') implies wt(v)wt(b)  = wt(a)wt(v ') .  By Condition 2.1, we already have such 

weight-preserving bijections between B~ and ,4~n . Note that all words in 14;A, 14;B 

have the same length, L. If n < L, we have An = Am, Bn ---- B~n and we can take 

Ca to be any bijection from Bn to fl'n- Assume, for an induction, that we have 

weight-preserving bijections Cm: Bm -+ ,4m for m < n. We can then construct a 

bijection 0~: B~ \ Bn --+ A~ \ An as follows. Consider (v, b) �9 B~ \ Bn and, for 

suitable p �9 N, write 

b = b l w .  ( v l ) b ~ w .  (v2) �9 �9 �9 b p ~ .  (vp)b~+l ,  

where WB(Vi) E ~4;B, bi E Bt(b,), and bl and bp+l a r e  allowed to equal the empty 

word. Put  v0 : v and, for i = 1 , . . . , p +  1, let (ai, v~) : r Then 

define v ~ : Vp+l, 

] ! ! 

a : alWA(Vl)a2WA(V2)' ' '  apWa(Vp)ap+l, 

and Cn(v, b) -- (a, v!). This construction is depicted in Figure 5. 

al ._ WA(V~)__ a2 _ WA(V~)~_ av+l ._ 
�9 r 

v i v![ v:i ! v:: ...... v:t I 
Figure 5. Construction of r 

Note that  the markers in a and b occur in exactly the same places. Starting with 

(a, v') and using r instead of era, we get Cn 1 and see that Cml(a, v') = (b, v). 

Clearly, wt(v)wt(b)  = wt(a)wt(v ' ) .  Thus, 0~: Bin \ Bn --+ .4~ \ .An is a weight- 

preserving bijection. Since there also exists a weight-preserving bijection between 

B~ and A~, it is now easy to find such a bijection between Bn and ~4n. 
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STEP 3: Construction of the finitary isomorphism with fect. We construct a 

bijection r from the set of x C XB which enter the closed-open set 

{x' c XB: x~.-.x~ e WB} 

infinitely often under both  o- B and O'B1; the bijection will be onto the set of 

points in XA which enter (the closed-open set corresponding to) WA infinitely 

often under both  aA and aA 1. We describe y = r between two consecutive 

oecurences of words in WB: Suppose WB(Vo),WB(Vl) E WB and bl E/~n are such 

tha t  for some 0 < i < L + N we have 

X--iX-i+l " " " X--i+2L+~--i = WB(Vo)blWB(Vl). 

The word ws  (vo)blWB (Vl) determines in y the word alWA (v~), where On (V0, bl) : 
(a,,  v~) and the position of alwA (V~l) in y is the same as that  of blwB (vl) in x. For 

three consecutive occurences of words in WB, the word determined in y = r 

by WB(V-1)bowB(vo)blwB(vl) may be pictured in terms of boxes as in Figure 6. 

a0 wA(v~) al wAG) 

WB(V-1) bo WB(Vo) bl WB(Vl) 

Figure 6. Construction of the isomorphism. 

It is easy to see that  the inverse r  is constructed in the same way: the 

word WA(V~)alwA(v~) in y e XA determines in x = r  the word wB(vo)bl, 

where r  v~) = (v0, bl) and WB(vo)abt occurs in the same position in x as 

WA(V~)al does in y. 

The maps r162  are clearly defined a.e. and finitary. They are measure- 

preserving as a result of the weight-preserving condition on our boxes. Finally, 

they have fect since, by Kac's  theorem [Pet83], the expected first-return time is 

finite for each of WB, WA. 
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