ISRAEL JOURNAL OF MATHEMATICS 132 (2002), 359-372

CONSTRUCTING FINITARY ISOMORPHISMS
WITH FINITE EXPECTED CODING TIMES

BY

ROBERT MOUAT AND SELIM TUNCEL

Department of Mathematics, University of Washington
Seattle, WA 98195, USA
e-mail: mouat@math.washington.edu, tuncel@math.washington.edu

ABSTRACT

This paper is motivated by the question of whether the invariants 3, A, cA
completely characterize isomorphism of Markov chains by finitary iso-
morphisms that have finite expected coding times (fect). We construct a
finitary isomorphism with fect under an additional condition. Whether
coincidence of 3, A, cA implies the required condition remains open.

1. Introduction

In the wake of the results of Keane and Smorodinsky [KS79a, KS79b] on finitary
isomorphisms of Markov chains, there was considerable activity on finitary iso-
morphisms with finite expected coding times (fect). It became clear that entropy
was no longer a complete invariant for (aperiodic) Markov chains, and further
invariants were constructed [Par79, Kri83, Tun81, PS84, Sch84]. As the smoke
cleared in 1983, two questions enmerged. The question of whether the classifi-
cations by almost block isomorphism and finitary isomorphism with fect were
identical was answered negatively in [MT91]. The other question, whether the
three invariants 8, A, cA (which will be defined below) form a complete set for
finitary isomorphism with fect, remains open after nearly 20 years.

In this paper we will make some progress on this question by constructing
a finitary isomorphism with fect under an additional positivity assumption. In

particular, working over a suitable ring, it is known that there exists a matrix
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intertwining the defining matrices of the two Markov chains; a corollary of our
result is that the Markov chains are finitarily isomorphic with fect whenever there
exists an intertwining matrix with a positive row and a positive column.

We start by defining Markov chains as in [PT82, MT91]. An exponen-
tial function is a function R — R* given by ¢ + a® for some a > 0. Let
exp = {a': a > 0}, and Z* denote the non-negative integers. Consider a matrix
A = A(t) over Z7 [exp], the set of polynomials in exp with non-negative integral
coefficients. We can write

I J) Z Gy Jmin,

meEexp

with as j.m € Z% and ay,g,m nonzero for only finitely many m. Let A, denote the
non-negative real matrix resulting from evaluating A at t € R. We will assume
that the matrices we use are primitive (aperiodic). Everything we say has an
extension to the periodic case, which we leave to the reader.

When ¢ = 0, the matrix Ag determines a directed graph G(A) with edges E(A)
and states (vertices) S(A), and a shift of finite type (X 4,04). We can associate
with each edge, e, in G(A) an element of exp called the weight of the edge,
wt4(e). The matrix A also defines a probability measure, p4, giving the Markov
chain (X 4,04, t4) as in [MT91]. A matrix P over Z¥ [exp] is called stochastic
if the non-negative real matrix P is stochastic. By Proposition 1.3 of [MT91],
there exists a unique stochastic matrix P defining the same Markov chain as A.

A Markov chain is traditionally defined via a non-negative real-valued stochas-
tic matrix M. Putting P(I,J) = M(I,J)! whenever M(I,J) # 0 and P(I,J) =
0 when M(I,J) = 0, we get a stochastic matrix over Z*[exp] which has P, = M
and defines the same Markov chain.

Define the beta function 84 of A by letting 8.4(t) equal the spectral radius of
Ag, fort € R

Let G be a primitive weighted graph with weights in a multiplicative Abelian
group; for example, G = G(A). For a path v = e;-- e, in G, its length is the
number of edges, I(y) = n, while its weight is the product of the weights of the
edges, wt(y) = [, wt(e;). We define the delta group, A, gamma group, T,
and distinguished coset, cA for G as in [PS84].

A = {wt(y)wt(y")~1: 4,4 are cycles in G with I(v) = I(7')},
cA = {wt(y)wt(y")~1: 4,7 are cycles in G with I(vy) = 1(v') + 1},

and T is the multiplicative group generated by {wt(v): v is a cycle in G}. Parry
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and Schmidt [PS84] showed that the quotient group I'/A is cyclic and generated
by cA.

Two Markov chains (X 4,04, 14) and (Xp,0p, up) are isomorphic if, almost
surely, there exists a measure-preserving bijection ¢: X4 — Xp with ¢gogq =
op¢. The isomorphism ¢ is finitary if both ¢ and ¢~! are continuous a.e., in
which case we can find as,my: X4 — Z7 defined a.e. so that if =} = z; for
—mg(r) < i < ag(x) then ¢(z)o = @(’)o, and similarly ay-1,my-1: Xp —
Z*. A finitary isomorphism is said to have finite expected coding times
(fect) if ag,mg,ay-1,my-1 may be chosen so that [(ag + mg)dus < oo and
flag-1 + mg-1)dpp < oo.

A finitary isomorphism is called hyperbolic if it preserves the stable and un-
stable manifolds a.e. Schmidt [Sch86, Sch87] showed that a finitary isomorphism
with fect is hyperbolic, and that 3, A, cA are invariants of hyperbolic finitary
isomorphism. An affirmative answer to the question of whether coincidence of
B3, A, cA implies finitary isomorphism with fect would in particular show that
the finitary isomorphisms with fect and hyperbolic finitary isomorphisms yield
the same classifications, that is, if there exists a hyperbolic finitary isomorphism
between two Markov chains then there also exists a finitary isomorphism with
finite expected coding times.

Our main result is the following.

1.1. THEOREM: Let P, Q be primitive stochastic matrices over Z* [exp] with
Bp = Bg, Ap = Ag, and cpAp = cglAg. Suppose there are states Iy €
S(P) and Jy € S(Q), a nontrivial column vector v, and a row vector v; over
Z* [exp] with (A™v,)(lo) = (v;B")(Jo) for all n € Z*. Then there exists a
finitary isomorphism ¢: Xp — X with finite expected coding times,

It was shown in [PT81] that Sp = B implies the existence of a nontrivial
matrix V over Zlexp] such that PV = V@. In the case there is a V with a
non-negative row and a non-negative column we have the following.

COROLLARY 1.2: Let P, Q be primitive stochastic matrices over Z* [exp] with
Bp = Bg, Ap = Ag, and cpAp = cgAg. Suppose that we have a matrix V over
Zexp] such that PV = VQ and the entries of at least one nontrivial row and
one column of V belong to Z*[exp). Then there exists a finitary isomorphism
¢: Xp = X with finite expected coding times.

The Markov chains (Xp,op, pp) and (Xg, 00, pg) are finitely equivalent if
there exist a Markov chain (Xg, og, ur) and bounded-to-one continuous surjec-
tions ¥: Xg = Xp, 6: Xp — X that commute with the shift transformation
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and preserve measure. If, in addition, the maps 1 and 6 are one-to-one a.e., then
(Xp,op,up) and (Xg, 00, ug) are said to be almost block isomorphic. An
almost block isomorphism is of course a (very special) finitary isomorphism with
fect. It was shown in [PT81] that if PV = VQ for a matrix V over Z% [exp| then
(Xp,op,pp) and (Xg, 00, pg) are finitely equivalent. The expectation was that
the existence of such a V would follow from the equality Bp = B¢ (see [PT81,
Par91]). Combined with Ashley’s replacement theorem [Ash90], this would then
yield an almost block isomorphism from the equalities Sp = By, Ap = Ag,
cpAp = cgAg. These hopes were dashed by examples given in [MT91] (see
Example 2.2 below). Corollary 1.2 reveals that a milder positivity requirement
oun V is sufficient for finitary isomorphism with fect.

If H is a (multiplicative) subgroup of the positive reals, we will denote by
Z[H] and Z*[H] the corresponding sets of integral and non-negative integral
combinations of the exponentials a* with a € H.

We do not know whether the existence of Iy, Jo, v, v; as in 1.1 can be deduced
from the coincidence of 3,A,cA. We will see below that we may restrict to
Z[A] and, since Z[A] is naturally isomorphic to the Laurent polynomial ring
R=2Z [1:1*, cens xlﬂ, work over R. Then P, @ are replaced by matrices A, B over
Rt =7Z% [:cli, .. .,x(ﬂ. Letting m, p denote the sizes of A, B, for each Iy € S(A)
and Jy € S(B) the set

My, 5, = {(v,w) € R™*P: (A")(Ip) = (wB™)(Jo) for all n € Z*}

is an R-submodule of R™*P. We have My, j, # {0} since there exists V over
R with AV = VB. In addition, by the primitivity of A, if My, j, contains a
nontrivial element of (R*)™*? then it contains an element of (R ~{0})™*P.
This motivated us to give in [EMT] a characterization of the submodules of R
that contain an element of (R* ~{0})". It is possible that this characterization
will help to decide if the existence of Iy, Jo with My, 7, N (R N{0})™P £ @ is
a consequence of the equality of 3, A, cA.

2. Laurent polynomials

We will restate the conditions of 1.1 in a more convenient form.

Suppose P, Q are primitive stochastic matrices over Z* [exp] with 8p = Sg,
Ap = Ag, and cpAp = cgAg. Write A = Ap = Ag. According to Proposition
1.17 of [MT91], we can find diagonal matrices D, Dy over exp and m € exp such
that the matrices

Dy'PD, _ D@Dy

A= and B=
m
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are over Z* [A]. Tt is easily seen that 84 = 8, Ay =Ag =T, =g =A, and
A, B define the same Markov chains as P, Q.

If Iy, Jo,v, and v; are as in 1.1, let v, = le(IO,IO)Dl_lvr and V; =
viD, Dy 1(Jo, Jo)m. Find a finitely generated subgroup H of the positive
reals such that V,,V, are over Z[H] and H contains A. Then write ¥, =
S atve i, Vi = Y abvy;, where v, ;,v;; € Z[A], the index 7 runs through the
(finite) set of cosets H/A and a; is a representative of the é-th coset in H/A. For
each ¢ the equation (A™v,;)(Iy) = (v;;B™)(Jp) holds for all n € Z*. Choosing i
such that v, ; # 0 and replacing v,,v; by v, ;, v, ;, we may assume that v, and
v, are over Z* [A].

Now pick a basis by, ..., bq of the free Abelian group A. Every € A can be
expressed uniquely as a product of integral powers of by, ..., bs. Putting ; = b!
we can view 0! as a monomial of R = Z [xli, . ..,xf], thus identifying Z[A]
with R = Z [z¥,...,2%] and Z+[A] with R = Z* [2F,...,z¥]. The matrices
A, B are then over RT, and weights of edges in the corresponding graphs are
monomials of R. For z1,...,x24 > 0 we have the spectral radius S4(xy,...,zq)
of the nonnegative matrix A(xy,...,24) and, as in the proof of Theorem 5.1
in [MT91], we find that B4(xq,...,24) = Bp(z1,...,24). This gives us the
conditions that will be used for the construction of a finitary isomorphism with
fect.

2.1. CONDITION:
1. A,B,v,,viareover Z"[A]C R and Ay = Ag = A.
2. Ba(z1,...,zq) = Bp(x1,...,2q) for all z1,...,24 > 0.
3. (A", )(Ip) = (v\B™)(Jo) for alln € Z+.

2.2. Example ([MT91] 5.7 and 5.8): Let p(x) = 2z and ¢(x) = 1+ z2%. Consider
0 1 00
_(p 1 _|paty 0 p g +[pE g
A_(y q)’ B= y 0 p 0 over Z* [z*,y*].
y 00 ¢

[MT91] showed that X4 and Xp are not finitely equivalent (hence not almost
block isomorphic), and also explicitly constructed a finitely isomorphism with

fect between them. Let
y 0 p q
V= .
(w y 0 f—m)

Then AV = V B. Since the first row and second column of V' are nontrivial
and over Z*[z,y], we let Iy = 1, Jy = 2, v, = Vey,, and v; = e1,V. Then
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Condition 2.1 is satisfied, and the existence of a finitary isomorphism with fect
follows from 1.1.

3. Weights and boxes
We will need a couple of lemmas regarding the weights of cycles in our graphs.

3.1. LEMMA (cf. [MT91] 5.13): For A, B satisfying Condition 2.1 and for every
d in A there exist cycles a, & in A starting at Iy and cycles 8, B in B starting at
Jo such that

5= wt(a) m
wt(@)  wt(B)’
o) = U(a) = 1(B) = 1(B),
wt(a) = wt(5), and

wt(@) = wt(B).

Proof: Since § € A we can find @/, @ starting at Iy and passing through all
states of A, and b', b’ starting at J and passing through all states of B with

_ wt(a’)  wt(b')

wt(@) — wi(d)’
I(a’) = I(@'), and
1) = 1().

’l(b'), a=aa')! , b= ') and b = ¥¥"9)71. The ratio of weights

is still 4, but now the lengths are all equal.

Now recall from [MT91] the weight-per-symbol polytopes WPS 4, WPSg and
the fact (see also [Tun92]) that 84 = fp implies WPS4 = WPSp. Hence,
wt(b)‘—('%’ € WPS,4 and there exists a finite number of cycles, a;, in A and
positive integer n such that

wt({a;}) : Hwt a;) = wt(db™), and
I{ai}): Zl ;) =

Similarly, since wt(a))/"® € WPSp there exists a finite number of cycles, 3;,
in B and positive integer m such that

wt({5:}) Hwt Bi) = wt(e™), and

1({8:}) Zlﬁz ) =1(a

Leta=a
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Since a passes through every state of A we can splice the cycles «; into the cycle
a; write this as a{o;}. Similarly splice the 3; into b and denote the resulting
cycle by b{3;}. Finally, let

a:=a™{o},
& = aa™ i},
B :=b"{8;}, and
B:=bb""1{5;},
to get the desired result. ]

3.2. LEMMA: There exist cycles va, v/ in A starting at Iy and passing through
every state of A, and a cycle vp in B starting at Jo and passing through every
state of B, such that wt(v4) = wt(vy) = wt(ys), and l(v4) = 1(v}4) +1 = l(yB)-
Moreover, if L € N, we can make sure that y4,7yp are not periodic of period p
for any p < L.

Proof:  Pick cycles ¢4, ¢y in A starting at Iy and passing through every state
of A, and a cycle cp in B starting at Jy and passing through every state of B,
with I(ca) = I(c/4) + 1 = l(cg). Now, using the cycles found in Lemma 3.1, let

YA = CAGwt(cq) Qut(c!y ) Qwi(cp)
7:4 = cifxawt(cA)dwt(ciq)awt(CBM and

YB = cBﬂwt(cA)ﬂwt(c’A)Bwt(cB)'

Clearly, c4, cg may be chosen to also ensure that y4, yg are not periodic of period
p for any p < L. [

For each I € S(A) we view v,.(I) as a sum of monomials each of which gives
a weighted edge from I to Jy. Similarly, for each J € S(B), we view v;{J) as
specifying weighted edges from I to J. Taking n = 0 in 3 of Condition 2.1 we
get v,.(Ip) = vi(Jp), which means that v,.(Iy) and v,(Jy) define the same set of
edges from Iy to Jo. When e is an edge in A, B, v,, or v, we will use a., @&, SBe,
and S, to refer to the cycles provided by Lemma 3.1 for & equal to the weight of
e.

Our isomorphism will be constructed by gluing together boxes. The top cor-
ners of the box will be states S(A), for example I, I5, the top edge, a, will
represent a path in A from I; to I. The bottom corners will be states in S(B),
for example Jq, Jo, and the bottom edge, b, will represent a path in B of the same
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length as a. The left and right sides will be weighted edges I — J; and 1o — Js,
respectively. Finally, whenever we form a box, the product of the weights of the

top and right sides will equal the product of the weights of the left and bottom
sides. (See Figure 1.)

L a € A1, Ip) I

v wit(v1)wt(b) = wt(a)wt(vs) U2

J1 be Bn(Jl,Jz) Jo

Figure 1. The product of the weights of the top and right sides of our
boxes will equal the product of the weights of the left and bottom
sides.

In Condition 2.1 we can assume that v, and v; are over Z* [A] ~{0} by using
the fact that A and B are primitive to replace v, by ANv, and v; by v;BY for
suitable N € N. We pick one of the edges in v, (Iy) = v;{(Jo) and call it vo.

3.3. LEMMA: There exists a B-cycle w starting at Jy and, for each I € S(A)
and each edge v € v.(I), there exists an A-path u(v) from I to Iy, such that
l(u(v)) = l(w) and wt(u(v))wi(vg) = wt(v)wt(w). Moreover, we can assume that
all the u(v) are different. (See Figure 2.)

I I u(v) Iy

v v Vo

Jo. w J() J() w JO
(a) (b)

Figure 2. By Lemma 3.3, there exists a word w such that for any

edge v € v.(I), as in (a), there exists u(v) to complete the box
shown in (b).
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Proof: Write S = S(A) and v = v,.. We will use a tree in the manner of [AM79].
The tree will have {(I,v) € & x v: v € v(I)} for its set of vertices, and will be
rooted at (Ip,vg). To grow the tree, we start with a single vertex (Ip, vg), and
iterate the following step for k < [S| - 1.

Iteration: Pick I, € S~{Iy,...,Ix_1} such that there exists an edge, a, in A
from I, to I; for some j < k. Now pick vy € v(I};) and add the vertex (I, vi) to
the tree with an edge ey, from (I, v) to (I;,v;). Theedgesex (k=1,...,|S| - 1)
will be called type I edges.

Now for each 7 € {0,...,1S| — 1} and each v € v(I;) ~v; add a vertex (I;,v)
and a type II edge (I;,v) = (I;,v;). Label these type IT edges e|s), .- ., €n, where
n is the number of edges in the tree.

For every I € S and every v € v(I) there is a path from (I, v) to (Ip, ve) which
consists of zero or one type II edges followed by zero or more type I edges. Note
that the edges are always transversed with decreasing values of k.

The tree is complete, and we are ready to start the construction of w.

If edge e, is type I (k < [S]), then ex: (I, vr) — (Ij,v;) for some j < k and
there exists an edge a in A with a: I, — I;. Now let

Wy = 7B,8vk/6a6vj7
U = a (VAavkaadvj)(Ij) y
u;g‘ = ’YAa‘Uk aaavja

where we used the notation c(;y to denote a rotation of the cycle ¢ so that it
starts at . (This is possible since v/ passes through every state of A.)
If edge ey, is type II (k > |S]), then eg: (I;,v) — (I;, v;) for some i. Now let

wk = YBYBBvBo:s
Uk = (’YAavavi) 74, and

up =74 (YAGu ;) -

Here we used two copies of y4 and vp so that we can ensure uy, # u}, by taking
L = 2max{l(a,): v € v, or v € v;} in 3.2. Notice that in each case

l(wk) = U(ug) = l(uy,), and

wt(wy) = wt(ul,).
Also, for edges of type I (ex: (I, vx) —+ (I, v;)) we have

wt(ug)wt(v;) = wt(vg)wt(wy),
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while for edges of type II (ex: (I;,v) — (I;, v;)) we have
wt(ug)wt(v;) = wt(v)wt(wg).

This means that for every edge ex: (I,v) — (I’,v') we can make boxes as in
Figure 3.

I Uk r I (U;c)/m\ I

v o' o o

Jo Wk Jo Jo W Jo
(a) (b)

Figure 3. Boxes for (a) moving down the tree and (b) staying at a
vertex of the tree.

We define the word w to be the concatenation w = wpwy—1---w;. Each
word u(v) is put together in a similar way, using uj and uj: Look at the path
(I,v) = (Ip,vg). If e is on this path, put u(v), = u; otherwise, put u(v); = uj,.
Then rotate each u(v), appropriately to define u(v) as the concatenation u(v) =
(V) u(v)n—-1---u(v)1. Since uj, allows us to stay at a vertex of the tree while
traversing wy, in B and uy allows us to move down the tree while traversing wy,
the proof of the lemma is completed by picking (see Figure 3) the corresponding
boxes and gluing them together. |

4. Proof of the theorem

We will continue to regard v,.(I) as specifying edges from I to Jo, and v;(J) as
specifying edges from Iy to J. If @ is one of these edges, or if a is a path (word)
in one of the graphs G(A) or G(B), we will denote its starting state by s(a) and
its terminal state by t(a).

The proof of Theorem 1.1 consists of three steps.

STEP 1: Construction of markers. Let the B-word wp and the A-words u4(v)
be as in 3.3. Similarly find an A-word w4 from I to Iy and, for each v € v;(J),
a corresponding B-word upg(v) from Iy to J such that l{(w4) = l(ug(v)) and
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wt(wa)wt(v) = wi(vo)wt(up(v)). If we put wa(v) = ua(v)wy for v € v, and
wp(v) = wgup(v) for v € v; and define Wy = {wa(v): v € v,} and Wp =
{wp(v): v € v}, then for each v € v,(I) and each v' € v;(J) we obtain from
Lemma 3.3 a box as in Figure 4.

I ’U)A(’U) IO

Jo wp(v') J

Figure 4. For each v € v,.(I) and v’ € v;(J) we have a box with
wt(v)wt(wp (') = wt(wa(v))wt(v').

We will modify the words wa(v), wp(v’) to ensure that, in addition, words in
W4 and Wg do not overlap.

Take a simple cycle @ = iy - - - i, starting and ending at Iy, and label the states
it passes through Io,..., I, so that ig: I — Ix41 {(with the convention that
I.+1 = Ip). Find I so that there exists an edge jo # i with s(jo) = Ix. Then
find a path jo---j, of minimal length back to one of the states I;. If I = 0 let
b =g tk_1Jo- - Jp; Otherwise let b = ig---ix_1jo- " Jpli+1 " *im. The cycles
a and b only pass through the state I; at their start and end, hence they have
no nontrivial overlap.

There exists k > 3 so that a®b* is not contained in w' for any w € Wy and
n € Z*. Let ¢; = aaaa®b® and c, = aaba®b*. Considering A-words g4 and
n € Z* with (c1),1(c2),1(94) < l(wy%), note that no two words of the form
wy%c1gace overlap. Similarly we can find words dy, da such that, for n € Z*+ and
w € Wg with I(dy),1(d2),1(98) < l(7fw}, no two words of the form d,ggdaygw
overlap.

Let ¢’ be an A-cycle at Iy and d' a B-cycle at Jp such that I(¢') = {(d1ds) + L
and [(d') = l(cico) + L for some L € Z*. Put g4 = @g,d,Gc e, ¢ @@ and
gp = Bd1d2 Berend Ba Ber. Now c1gace and digpds have the same length and
weight. We replace each us(v)ws € Wy by wa(v) = ua(v)wayhergacs and
each wpup(v) € Wp by wp(v) = digpdayyhwpup(v). Then we have a box as in
Figure 4 for each v € v,(I) and each v’ € v;(J). In addition, words in W4 have
no nontrivial overlaps, and neither do words in Wg. The sets W4 and Wg will
be used as markers for our isomorphism.
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STEP 2: Bijections between words not containing markers. Let us denote the
set of A-words of length n by W,,(A) and put

={(a,v) € Wn(4) x vr: s(a) = Io, t(a) = s(v)},
={(a,v) € A,: a does not contain a word in Wa},

3' ={(v,0) € vi x W (B): t(v) = 5(b), £(b) = Jo},
By, ={(v,b) € By,: b does not contain a word in Wg}.

) €
)

For n = 1,2,..., we will find bijections ¢,: B, — A, such that ¢,(v,b) =
(a,v") implies wt(v)wt(b) = wt(e)wt(v'). By Condition 2.1, we already have such
weight-preserving bijections between B, and A;,. Note that all words in W4, Wg
have the same length, L. If n < L, we have A,, = A, B, = B], and we can take
¢, to be any bijection from B, to A,. Assume, for an induction, that we have
weight-preserving bijections ¢n,: B, — A, for m < n. We can then construct a
bijection ¢): B, ~ B, = A;, ™ A, as follows. Consider (v,b) € B}, ~ B, and, for
suitable p € N, write

b= bywg(v1)bawp(vz) - - - bywp(vp)bpy1,

where wg(v;) € Wa, b; € Bys,), and by and b,y are allowed to equal the empty
word. Put vg = v and, for i = 1,...,p+ 1, let (as,v]) = ¢ys,)(Vi-1,;). Then
define v' = vy, 4,

a = a1wa(v})azwa(vh) -~ apwa(v))aps,

and ¢, (v,b) = (a,v’). This construction is depicted in Figure 5.

a3 wa(vi), @z wa(vy), apyy
v V] 0 vh v, Up Vpi1
bi wp(v)) b by wa(vp) bpn

Figure 5. Construction of ¢/,.

Note that the markers in a and b occur in exactly the same places. Starting with
(a,v") and using ¢! instead of ¢,,, we get ¢! and see that ¢;.}(a,v’) = (b,v).
Clearly, wt(v)wt(b) = wt(a)wt(v'). Thus, ¢.,: B, ~ B, = A, N A, is a weight-
preserving bijection. Since there also exists a weight-preserving bijection between
B!, and A, it is now easy to find such a bijection between B,, and A,,.
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STEP 3: Construction of the finitary isomorphism with fect. We construct a
bijection ¢ from the set of x € Xpg which enter the closed-open set

{z' € Xpg: 2 - -2} € Wg}

infinitely often under both op and o3'; the bijection will be onto the set of
points in X4 which enter (the closed-open set corresponding to) W, infinitely
often under both o4 and ¢;'. We describe y = #(z) between two consecutive
occurences of words in Wg: Suppose wg(vg), wp(v1) € Wg and by € B, are such
that for some 0 <7 < L+ N we have

Ti%_iqp1 - Toip2b4n—1 = wB(vo)rwp(v1).

The word wp (vo)b1wp(v1) determines in y the word ayw 4 (v} ), where ¢, (vo, b1) =
(a1, v}) and the position of a;w4(v]) in y is the same as that of bywg(vy) in z. For
three consecutive occurences of words in Wg, the word determined in y = ¢(z)
by wp{v_1)bowp(ve)b1wp(v1) may be pictured in terms of boxes as in Figure 6.

ag wa(vp) ay walv])

Y_13 Vg Vo (2 U1

wp(v_1) bo wg(vo) b1 wp(v1)

Figure 6. Construction of the isomorphism.

It is easy to see that the inverse ¢! is constructed in the same way: the
word w4 (vg)aywa(vy) in y € X4 determines in x = ¢~1(y) the word wp(vo)b1,
where ¢, (a1,v}) = (vo,b1) and wp(ve)ab, occurs in the same position in z as
wa{v))ay does in y.

The maps ¢,¢~! are clearly defined a.e. and finitary. They are measure-
preserving as a result of the weight-preserving condition on our boxes. Finally,
they have fect since, by Kac’s theorem [Pet83], the expected first-return time is
finite for each of Wg, Wj.
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